TARTINI

Il tempo e le opere

A CURA DI
ANDREA BOMBI E MARIA NEVILLA MASSARO

Bologna, 1994
SOCIETÀ EDITRICE IL MULINO
Elaborato il suo sistema armonico, a partire dal 1750 Giuseppe Tartini si mise con ostinazione alla ricerca di un riconoscimento ufficiale da parte del mondo accademico. In quegli stessi anni anche Jean-Philippe Rameau, il suo più diretto concorrente, stava perseguendo gli stessi obiettivi.

Dopo il 1760 Tartini sembra rassegnato a evitare scontri diretti con i «fisico-matematici»; si accingeva invece a redigere e a pubblicare le sue «risposte» al ginevrino Jean-Adam de Serre, al «celebre Sig. Rousseau» e agli enciclopedisti (1767-69); queste ultime sono già state recentemente analizzate da Brenno Boccadoro [1990].

I fondamenti del sistema armonico tartiniano

In base a un documento del 1738, recentemente segnalato [Barbieri 1990a, 210], non vi è oggi più alcun dubbio nell’attri-
bui re a Tartini la scoperta del cosiddetto «terzo suono», cioè dei suoni di combinazione. Ed è proprio su tale fenomeno che egli pose le basi fisiche del suo sistema armonico. Riassumiamo quest’ultimo per sommi capi, al fine di rendere più immediatamente interpretabili le critiche che ad esso verranno mosse.

Già il fenomeno della «risonanza» di Rameau suggeriva che «il sistema armonico si risolve nella unità, come in suo principio» [Tartini 1754, 13]. Dall’esempio 1 si può infatti constatare che le armoniche superiori — le cui lunghezze di corda vibrante costituiscono una proporzione armonica — nel loro complesso danno all’orecchio l’impressione di formare un unico suono, pari al generatore 1. Una conferma di ciò si può trovare in quegli strumenti musicali in cui gli armonici vengono rinforzati artificialmente, come nell’organo (registri di Principale, Ottava, XII, XV, XVII, XIX inseriti contemporaneamente). Tartini ritiene però che la «risonanza» ramista non provi in modo decisivo i legami tra il suono generatore e l’intera serie armonica; fra tutti i suoni previsti dall’esempio 1 afferma infatti che si distinguono nettamente solo 1, 3 e 5 (2 e 4 — essendo ottave replicate — si confondono con il fondamentale 1, e sulla loro reale esistenza esprime addirittura delle riserve) [Tartini 1754, 170].

Per il nostro autore, il terzo suono offrirebbe invece una prova più generale a riguardo, essendo fisicamente dimostrato che l’intera serie armonica genera l’unità come terzo suono (es. 2): quest’ultimo costituisce quindi un vero basso fondamentale.

Es. 1. Prime sette armoniche emesse da una corda ideale vibrante.

Es. 2. Terzo suono di Tartini (note nere), relativo a differenti intervalli armonici.
Tale sua teoria, almeno per la scala diatonica maggiore ascenden
tente di figura 1, tratta da una sua pubblicazione [Tartini 1767, 80], sembra perfettamente funzionare. Questa conclusio
ne non deve sorprendere, dato che la base fisica del suo sistema
— se ricordiamo la definizione che allora veniva data del terzo
suono — è in perfetto dualismo con quella di Rameau.

![Scala diatonica nelle sue forme](image)

![Basso fondamentale, terzo suono, cadenze ordinate](image)

Fig. 1. Nel pentagramma superiore è riportata la scala ascendente di Do maggiore con relativo accompagnamento, secondo il *De’ Principi dell’armonia musicale* di Tartini (1767). I terzi suoni generati dalle triadi in oggetto, notati nel pentagramma inferiore, danno luogo ad un basso fondamentale in accordo con i principi tonali (è infatti costituito da un corretto concatenamento di tonica, dominante e sottodominante).

Dimostrata così la vera essenza dell’armonia, Tartini sud-
divide armonicamente un monocordo di lunghezza unitaria,
ricavandone le tre serie dell’esempio 3 [Tartini 1754, 50-52]:
1ª serie, è la «sestupla armonica» fondamentale (l = 1/n, con n
intero compreso tra 1 e 6): dà origine al modo maggiore (C-E-
G); 2ª serie, è costituita dai «residui» della precedente (l = 1/n):
genera il modo minore (C-E₄-G) e la sottodominante F (da
notare che i numeratori si succedono in progressione aritmeti-
ca); 3ª serie, si ottiene moltiplicando fra loro i corrispondenti
termi delle prime due: come si vede dall’esempio 3, essa dà
luogo alle dissonanze; queste ultime sono quindi caratterizzate
dal contenere due intervalli consonanti dello stesso genere ba-
sati su due note differenti (C-G e G-D nella 9ª, G-C e C-F nell’11ª,
C-E e E-G# nella 12ª aumentata, E-G e G-B₄ nella 14ª minore).

Per Tartini, in ultima analisi, il modo maggiore trae origine
dalla serie armonica, il modo minore dalla serie aritmetica e le
Es. 3. Origine del modo maggiore (1^ serie), del modo minore (2^ serie) e delle dissonanze (1^+ 3^ serie), secondo Tartini.

dissonanze da quella geometrica. Tale dottrina presenta evidenti punti deboli, che vedremo evidenziati nelle «censure» di Eulero e di Riccati.

Dispute sul cerchio armonico nel carteggio Riccati-Tartini

Il Commercio di lettere intorno ai principj dell’armonia fra il Signor Giuseppe Tartini ed il Conte Giordano Riccati è attualmente conservato nell’Archivio Civico di Pirano; per l’analisi che seguirà mi sono servito della riproduzione fotostatica gentilmente concessami in visione dal Centro Studi Antoniani di
Padova, copia già appartenuta al compianto padre Leonardo Frasson [Tartini-Riccati]. Raggugli sulla consistenza e sulla genesi storica di detto carteggio si possono trovare nello studio monografico di Antonio Capri [Capri 1945, 471-9]. Ricorderò solo che Riccati entrò in contatto epistolare con Tartini all’inizio del 1760, tramite il marchese Angelo Gabrielli. Dall’esame dell’epistolario, risulta che la discussione relativa al sistema armonico tartiniano si estese con ritmo serrato per i primi otto mesi dell’anno: dall’agosto 1760 al maggio 1768 figurano poche altre missive, per lo più di circostanza e pressoché prive di contenuto tecnico.

Inutile ricordare che dal carteggio emergono subito evidenti i contrasti tra l’impostazione neopitagorica di Tartini e quella galileiana di Riccati, che — fra l’altro — portava quest’ultimo a non riconoscere alcuna autorità alle affermazioni degli autori classici: «Quando si tratta, Sig. Giuseppe rev.mo, di stabilir la teoria della musica egli è di uopo por mira alla verità, e non a ciò che han pensato i Greci, i Latini, i moderni [...] Che i Greci abbianu usato il termine di armonia nulla a me importa. Siamo in un secolo in cui non si quistiona più di parole» [Capri 1945, 473-4; Tartini-Riccati, 105].

1. La confutazione del cerchio armonico

Esaminiamo ora le «difficoltà» sollevate da Riccati sulla presunta armonicità del cerchio, tema riguardo al quale una ventina di anni dopo egli ebbe così a esprimersi: «Persuaso il Sig. Tartini dell’utilità della ragione armonica per la musica, crede d’aver scoperto essere il circolo armonico, e passando da meditazione a meditazione, affermò essere il circolo il fondamento dell’armonia, deducendosi da esso l’intero musicale sistema»; rincarando più avanti la dose: «si rende totalmente inutile, e superfluo il principio del circolo, che ha tanto che fare coll’accordo de’ suoni, quanto coll’accordo de’ colori, dei sapori, e degli odori» [Riccati 1781, 171, 195].

1.1. Con riferimento alla figura 2, Tartini dimostra che HC è medio armonico tra i due rettangoli AHEG e HBDE. Riccati replica che per tale dimostrazione bisogna chiamare in causa
Fig. 2. Costruzione geometrica tendente a dimostrare che il cerchio è «armonico» (Tartini).

anche il quadrato circoscritto, non essendo sufficiente il solo cerchio; quest’ultimo inoltre fornisce il segmento \(HC \), ma non il suo quadrato. Tutti i matematici – aggiunge – sono invece d’accordo nell’associare al cerchio la media geometrica, essendo \(HC \) medio geometrico tra \(AH \) e \(HB \) [Tartini-Riccati, 57: lettera del 19.3.1760].

1.2. Un’altra prova, secondo Tartini, sarebbe costituita dal fatto che \(CB^2 \) risulta essere numericamente pari al terzo suono prodotto dai due generatori \(AC^2 \) e \(HC^2 \) (in lunghezze di corda vibrante). Oltre al fatto che il cerchio ci dà i tre segmenti in oggetto, ma non i loro quadridi, Riccati fa osservare che tale proprietà vale solo quando \(AH \) è un sottomultiplo di \(AB \), il che fra l’altro comporta che il rapporto fra i due suoni sia inferiore a 2:1 [cfr. anche Riccati 1781, 174-177].

1.3. Servendosi delle tre quantità già prese in considerazione nella sopramenzionata dimostrazione geometrica del terzo suono, Tartini estrae dal cerchio anche le tre serie alle quali si è accennato nel § 1 [Tartini 1754, 50]. Con riferimento alla figura 3 si ha:

1\(^{a}\) serie:

\[
\begin{array}{cccccccc}
1 & , & 1 & , & 1 & , & 1 & , \\
2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

2° serie:

$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$

3° serie:

$\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \frac{4}{25}, \frac{5}{36}$

è data dal quadrato delle «ordinate», essendo queste ultime pari alla media geometrica dei due segmenti in cui esse suddividono il diametro e quindi pari al prodotto dei termini della 1° serie con i corrispondenti della 2° (sarà dunque: $1/2 C^2 = A 1/2 \times 1/2 B = AC^2 \times CB^2$, $1/3 D^2 = A 1/3 \times 1/3 B = AD^2 \times DB^2$, $1/4 E^2 = A 1/4 \times 1/4 B = AE^2 \times EB^2$, ecc.).
Le critiche di Riccati a tale costruzione, oltre alle obiezioni di base già viste precedentemente, sono le seguenti [Tartini-Riccati, 133 ss.: 23.6.1760].

1a serie — È l’unica che si salva, non essendoci alcun dubbio che essa porti correttamente al modo maggiore disposto nella sua «ottima forma», cioè in posizione fondamentale.

2a serie — a) la triade minore compare solo allo stato di primo rivolto (EUSAGEC = 5/6 : 2/3 : 1/2), mancando il suono 1; per ottenere quest’ultimo sarebbe del resto necessario continuare la 1a serie fino all’infinito, oltrepassando quindi il suono limite 1/6, imposto dallo stesso Tartini; b) la 2a serie dà anche, mischiata alla minore, la triade maggiore; c) nella sopramenzionata lettera [Tartini-Riccati, 135] Riccati fa osservare a Tartini che — dopo aver giustamente condannato Rameau perché, sulla base di una supposta risonanza inferiore, ottiene F minore come tonalità relativa di C maggiore — al posto di A minore nel suo sistema fa corrispondere C minore a C maggiore: «E possibile che quel lume, che le ha servito così bene di scorta per discernere gli errori altrui, si spenga poi quando si tratta di giudicare le cose proprie?».

E tutto ciò senza considerare che la triade minore — come si vede nell’esempio 4 — genera due terzi suoni non equisini al fondamentale, di cui quello grave è per di più dissonante.

3a serie — Anche la serie delle dissonanze è facilmente attaccabile; sorvolando sull’arbitrarietà della sua costruzione, Riccati fa notare che: a) il primo termine è costituito da 1/4, «perfettissima consonanza»; b) invece di dare origine alla 13a, «che tutto giorno si pratica nel contrappunto», tale serie dà origine alla 12a aumentata, che per ammissione dello stesso Tartini «giunge affatto nuova nel musicale sistemas»; c) non è generale, dato che nell’accordo di 9a minore — ad esempio — le due quinte sono una giusta e l’altra diminuita [cfr. anche: Riccati 1781, 200 ss.; Riccati 1782, 80 ss.; Tartini-Riccati, 23 ss.: 2.2.1760].

Alla fine della lunga missiva del 23 giugno, Riccati aggiunge: «Conchiudo, che se può talvolta sembrare, che le serie seconda, e terza ci diano qualche cosa di buono, è questo effetto non del metodo, ma di una fortuita combinazione. Ha obbligo un vero metodo, che ogni cosa proceda perfettamente» [Tartini-Riccati, 136 ss.: 23 giugno 1760].
Es. 4. Terzi suoni generati dalla triade minore C-Eb-G: si può constatare che, contrariamente a quanto si verifica per la corrispondente triade maggiore (cfr. esempio 2), in questo caso il fenomeno del terzo suono non fornisce il corretto basso.

Riccati, 144]. Osservazione che indispettì molto Tartini, come si rileva da una sua risentita replica del 4 agosto successivo [Tartini-Riccati, 153].

1.4. Abbiamo visto che la seconda delle tre serie viste precedentemente contiene sia il modo maggiore che il minore. Per separarli Tartini ricorre alla costruzione geometrica di figura 4: in essa si può constatare che il quadrante circolare di centro F e raggio 5/6 – passando per i punti B1/2, C2/3, F5/6, e non per E4/5, D3/4 – estrae da detta serie il solo modo minore. Questo artificio viene impugnato da Riccati già in due delle prime lettere del carteggio (quelle del 5 gennaio e del 2 febbraio 1760), entrambe fatte pervenire a Tartini tramite il marchese Gabrielli.

Fig. 4. Costruzione escogitata da Tartini per separare il modo minore dal maggiore, modi che nella 2a serie dell’esempio 3 compaiono invece uno frammisto all’altro. Il lato del quadrato \(AHOG\) si suppone pari all’unità.
[Tartini-Riccati, 3, 23 ss.]. Tale critica verrà quasi testualmente riportata nell’Esame da lui pubblicato nel 1781:

Osservi chi legge l’incostanza del metodo. Nel dimostrare il circolo armonico, e nel determinare o il terzo suono, o le parti essenziali del contrappunto, considera sempre il valente professore i quadrati delle ordinate al circolo; e poi nel separare dalla seconda serie l’accordo per terza minore, s’attiene alle semplici ordinate. In oltre per avere la detta seconda serie assegna al circolo il raggio = 1/2, e per scegliere da esso l’accordo per terza minore, pone in opera il circolo del raggio = 5/6 [Riccati 1781, 188-190].

Il 23 maggio 1760 farà ancora rilevare a Tartini: «Così accomodando la norma all’edificio, e non l’edificio alla norma, si pone in bando quella tanto decantata unità di principio, circolo inscritto, quadrato circoscritto» [Tartini-Riccati, 115]. Con stretta logica matematica, Riccati osserva inoltre che il quadrante di figura 4 passa per i cinque punti 5/6, √2, 7/12, 2/3, 1/2: per limitarli ai tre della triade minore (5/6, 2/3, 1/2) «non basta il solo principio del circolo, ma bisogna dar luogo ad un altro principio, ed è, che nell’armonia non si accettino salvo che quantità razionali» [Riccati 1781, 192-193].

1.5. Nei suoi scritti teorici, Jean-Philippe Rameau arrestra la résonnance du corps sonore al 6° armonico, limitandosi a etichettare il 7° – con criterio del tutto arbitrario – come son perdu (suono perso). Anche Tartini arrestra la sua 1ª serie al «sestitupo confine», ma – contrariamente a Rameau – ritiene necessario dimostrare l’esistenza di tale limite, operazione che effettua facendo (manco a dirlo) ricorso alle virtù del suo cerchio armonico [Tartini 1754, 56-60].

A tale riguardo osserverà però Riccati:

Nel lungo carteggio, che per istabilire i veri principj dell’armonia tenni con lui l’anno 1760, e che gelosamente conservo, ingenuamente gli significai, che quella, ch’egli riputava dimostrazione, non era tale. In fatti essa è talmente inconcludente, ch’io mi dispenso dal riferirla, e dal confutirla. Si assuma dunque [tale limite] come principio d’esperienza [...]

Opponeva il Sig. Giuseppe, che fa di mestieri dimostrare il sestituplo confine, e non assumerlo dalla esperienza. E se questa dimostrazione non ci fosse? Io sono persuaso, che il numero 5 fra gl’impari sia l’ultimo consono, perché tal, e tanta, e non più è l’attività dell’orecchia umana [Riccati 1781, 177, 196].

330
La teoria delle consonanze del fisico trevigiano si basava infatti – e oggi possiamo dire saggiamente, dato che a quei tempi la psicoacustica fisiologica non era ancora nata – su constatazioni di tipo empirico [Barbieri 1990b, 163-165].

2. Cerchio armonico contro parabola apolloniana

Messo di fronte a una tale mole di contestazioni, a Tartini non rimane che tentare di salvare il suo cerchio lanciando la seguente sfida:

chiunque voglia opporre altra figura, ha debito preciso non solo di assegnare, e dimostrare la natura armonica della figura; ma in oltre di dedurre dalla stessa figura, come origine, l'intero musicale sistema in genere, specie e individuo, e ha debito preciso di assegnar, e dimostrare i rapporti del genere fisico inseparabili dal genere dimostrativo della stessa figura. Quando una se ne trovi, che non sia il cerchio, mi ritratto [Tartini-Riccati, 85: 12.4.1760].

Riccati non si tira certamente indietro:

Ella promette di ritrattarsi, quando si assegni una figura diversa dal cerchio, da cui si deduca l'intero musicale sistema in genere, specie, ed individuo. La figura l'ho in pronto, ed io glie la pongo sotto dagli occhi, non perché ad essa si appiglio lasciato il cerchio; ma perché cavi la conseguenza, che da principio così rimoti, e totalmente stranieri non deve dedursi il musicale sistema [Tartini-Riccati, 91: 2.5.1760].

Come già provocatoriamente avanzato in una precedente lettera, secondo il matematico trevigiano «la parabola apolloniana meriterebbe il titolo d'armonica con più ragione del circolo», non presentando alcuna necessità di far ricorso ai quadrati dei segmenti intercettati [Tartini-Riccati, 58: 19.3.1760]. Vediamone le prove.

a) Con riferimento alla figura 5, è facile dimostrare che BD è medio armonico tra AB e BC. b) Supponiamo ora di sezionare la stessa parabola di figura 5 all'altezza del fuoco F, in modo cioè da avere – con riferimento alla figura 6 – $AF = FG = 1/2$ e $FH = 1/4$; assunti, ad esempio, AB e BM come lunghezze di corda vibrante di due suoni, BG sarà pari al terzo suono da essi
Fig. 5. Proprietà del cerchio e della parabola messe a confronto. Dato il cerchio con centro in I, e la parabola con fuoco in F (FH = IH / 4), si ha:

- $BD = \text{medio armonico tra } AB e BC$;
- $BE = \text{medio geometrico tra } AB e BC$;
- $BG = \text{medio aritmetico tra } AB e BC$.

Riccati può quindi obiettare a Tartini che – dovendo appigliarsi a una figura geometrica – la parabola «apolloniana» dovrebbe a rigore essere considerata più «armonica» del cerchio.

Fig. 6. Riccati fa vedere che anche con la parabola è possibile ottenere le tre serie che Tartini estraeva dal cerchio di figura 3, nonché il terzo suono.

generato (proprietà che, analogamente a quella del cerchio tartiniano, vale solo per AB sottomultiplo di AG). c) Dalla stessa parabola di figura 6 si ottengono anche le tre serie tartiniane:

\[
AG = 1 \quad AF = \frac{1}{2} \quad AE = \frac{1}{3} \quad AD = \frac{1}{4} \quad AC = \frac{1}{5} \quad AB = \frac{1}{6} \\
FG = \frac{1}{2} \quad EG = \frac{2}{3} \quad DG = \frac{3}{4} \quad CG = \frac{4}{5} \quad BG = \frac{5}{6} \\
FH = \frac{1}{4} \quad EI = \frac{2}{9} \quad DK = \frac{3}{16} \quad CL = \frac{4}{25} \quad BM = \frac{5}{36}
\]
d) Nella lettera del 23 maggio seguente Riccatti giunge alla stretta finale: «Le resta ancora Sig.r Giuseppe stimatissimo l'ultima ritirata, ed è, che a me non riuscirà valendomi del quadrato, e della parabola di separare dalla seconda serie l'accompagnamento consonante di terza minore. Vediamo un poco, se in quest'ultima impresa io ci riesco sì o no» [Tartini-Riccatti, 116]. Con procedimento analogo a quello di Tartini, presenta quindi la parabola di figura 7, che passa solo per i punti relativi alla triade minore. Per quest'ultima dimostrazione il violinista istriano si era però visto costretto a considerare le semplici lunghezze di ciascun segmento, anziché – come aveva sempre fatto nelle dimostrazioni precedenti – il loro quadrato. Dato così scacco mattato al suo avversario, Riccatti si sente quindi autorizzato a concludere:

Che ne dice il mio caro Sig.r Giuseppe? Non è questo il tempo, in cui mantenga la parola data, e si ritratti, avendo io assegnata una figura diversa dal circolo, da cui si deduce l'intero musicale sistema in genere, specie, ed individuo? Se la parabola le dà tutto quello, che le dà il circolo, ed anche qualche cosa di più, e con maggiore uniformità, ed eleganza; non deve ella ripudiare il circolo, ed adottar la parabola? L'assicuro, che se fossi persuaso del suo metodo, e dei suoi principi, non tergiverserei un momento. Io che batto un'altra strada, non posso dichiararmi per la parabola
se non a confronto del circolo, essendo mia ferma opinione, che e l'una, e l'altro siano basi troppo deboli, e mal atte a sostenere il musicale sistema [Tartini-Riccati, 117: 23.5.1760].

Conclusione che, solo tre giorni dopo, Tartini mostra di non gradire per niente: «la Signoria vostra tien per cosa certa, di avermi questa volta colto al varco, ed io intanto tengo per cosa certissima che questa volta ella è più lontana che mai dal cogliermi» [Tartini-Riccati, 119: 26.5.1760]. A tale secca replica di carattere emotivo, il 7 giugno successivo farà seguire quattro argomentazioni in difesa del cerchio, miranti a dimostrare la supposta maggiore «unitarietà» di quest’ultimo nei confronti della parabola:

Il Sig.r Conte dunque è da me obbligato a dover esaminare se sia forzato ad ammettere, e concedere quanto ho promesso. Essendo necessariamente, dico in genere, che per necessaria conseguenza il detto cerchio è il vero principio dell’armonia, perché nel detto cerchio si risolvono tutti i dati premessi. Dico in specie, che per equal conseguenza la sola ragion dupla radicale tra quadrato, e cerchio congiunge nello stesso soggetto in principio di unità, le vibrazioni, e oscillazioni per serie infinità di linee supposte sonore, perché nella sola ragion dupla radicale congiungonsi quadrato, e cerchio in centro comune, linee comuni, e punti comuni. Dico in individuo, che ciò non può trovarsi nella parabola apolloniana; essendo dimostrativamente impossibile assegnare in questa centro, linee, e punti comuni della ragion dupla radicale, e nello stesso tempo assegnar le due serie espresse dalle suddette linee supposte sonore nello stesso principio di unità. Qui dunque sta il primo inganno del Sig.r Conte, il quale separando arbitrariamente le cose sistematicamente congiunte, dimostra vera una cosa, che congiuntamente è falsa.

Il secondo inganno si è la creduta equivalenza del foco della parabola al centro del cerchio nel punto F: inganno per sè, e per le conseguenze. Per sè, perché io dico, centro comune, linee comuni, e punti comuni, e lo dico non arbitrariamente, ma in forza di sistema. Delle tre condizioni del cerchio mancandone due alla parabola, l’inganno è chiaro. Per le conseguenze, perché dal centro, linee, e punti comuni della dupla radicale tra quadrato, e cerchio procedono originalmente le due serie espresse armonica razionale nel diametro diviso per la serie delle frazioni, armonica radicale nelle corde del cerchio, quali due serie si trovano tra loro in unità nel diametro, e percì formano vero sistema; questo in nutun modo può esser conseguenza della parabola, né di altra figura fuorchè di quadrato, e cerchio congiunti insieme dalla dupla radicale.
Il terzo inganno si è il supposto di creder migliore nella parabola la serie razionale delle ordinate FH11/4:El2/9:DK3/16 etc. della radicale de’ seni nel cerchio, benchè sebbene in effetto esprime lo stesso, non perciò esprime la cagione originale, e questa è tanto positiva, e reale nel sistema riportato al cerchio, ed espresso per seni, corde, e suitese, quanto è positiva, e reale la serie delle corde, le quali supposte sonore, sono unisone per serie infinita a’ suoni dedotti co’ pesi in serie aritmetica 1, 2, 3, etc. dal diametro supposto corda pendula sonora, e in unità di suono col diametro supposto corda tesa su’l monocordo. Se in ciò appunto consiste la forza del sistema, non può mai dirsi migliore la serie razionale, se non che non intendendosi la forza del sistema, o anteponendosi in originalità il prodotto alla radice.

Il quarto inganno si è finalmente la parabola che da una parte incontra 1/2, 1/3, 1/6, dall’altra 1/2, 2/3, 5/6, ed esclude 1/4, 3/4: 1/5, 4/5. Questa è veramente dimostrazione, ed è in effetto eguale alla mia. È poi eguale alla mia in forza del sistema, che vuol dire in forza di origine, e cagione? In sostanza di principio affatto primo? Non mai: è chiaramente una derivazione, ed è anzi una evidente e definitissima prova a posteriori della verità del mio sistema, e della mia originale posizione, di che ringrazio il Sig.r Conte che me l’ha proveduta [Tartini-Riccati, 129].

Come si vede, Tartini rimane fermamente convinto dell’esistenza di una «radice armonica unitaria» contenuta in nuce nel cerchio, e solo in esso; proprio su tale terreno si era già scontrato, anni prima, con Paolo Battista Balbi [Barbieri 1987, 186-189].

La controversia fra i due studiosi si conclude di fatto qua: nonostante il suo tanto conclamato rigore «dimostrativo», argomentazioni di carattere rigorosamente matematico non potevano infatti fare breccia nelle convinzioni di Tartini, dato che per lui il cerchio in realtà costituiva un simbolo esoterico di derivazione neopitagorica, racchiudente «la scienza occulta del numero».

Dal punto di vista del comportamento di Riccati è interessante ricordare che il 12 agosto successivo egli informerà Tartini che la sua opera su Le leggi del contrappunto, seppure a buon punto, non è ancora completata; a tale riguardo riterrà però prudente cautelarsi da eventuali «censure» nelle quali a sua volta dovesse incappare:

Che se pubblicata che fosse la mia opera ella le facesse l’onor d’impugnarla, sappia, che essendo sicuro, sicurissimo, che la criticherebbe con quella onestà che è sua propria, probabilmente
parlando non le risponderete né meno una sillaba, non per mancanza di stima della sua persona, e del suo sapere, ma perché queste controversie io le stimo inutilissime, non servendo ad altro che a gittare il tempo senza frutto, e restando per lo più ciascuno nella sua opinione. La disputa quasi sempre si riscalda, di modo che si va fuori di quistione, e la letteraria mischia si finisce con disgusto d’ambo le parti. Il Mondo poi senza tanti contrasti giudica se la ragione stia o dalla parte del critico, o dalla parte del critico [Tartini-Riccati, 156-157].

Nella stessa missiva si legge anche: «È mia costante massima il confermare le mie sentenze, senza confutare le altrui» [Tartini-Riccati, 155]. Tale «massima», col trascorrere degli anni, si rivelera comunque essere niente affatto «costante»: circa un ventennio dopo – e, si noti bene, dopo la morte dei rispettivi autori – darà infatti alle stampe le sue confutazioni delle teorie armoniche di Rameau (1780), Tartini (1781) e Vallotti (1782). Da questo punto di vista bisogna riconoscere che assai più schietto era invece il carattere del violinista istriano. È doveroso in ogni caso dare atto a Riccati di essersi quasi teatralmente attenuto, nell’Esame del sistema musicale del Sig. Giuseppe Tartini, alle critiche già formulate nel carteggio del 1760.

La censura di Eulero e la replica di Tartini

Verso la fine del secolo scorso – riordinando l’Archivio della Cappella Antoniana di Padova – Giovanni Tebaldini si imbatté in un «esame» del Trattato tartiniano, non firmato e non datato. Avvalendosi anche di elementi già in suo possesso, non tardò a identificarne con sicurezza autore e data: Leonardo Eulero, 1754-56. Trattandosi di un manoscritto ancora inedito del maggiore matematico del Settecento, Tebaldini si affrettò quindi a pubblicarlo [Euler 1897].

Esaurito questo breve ragguaglio storico, vediamo ora di interpretare tecnicamente le argomentazioni dei due autori.

1. **Gli «esponenti» di Eulero**

Abbiamo visto che – attraverso speculazioni aventi la loro giustificazione fisica nel terzo suono – Tartini era pervenuto a suddividere i rapporti musicali in tre classi e ad associare a ciascuna di esse una particolare serie: armonica per la triade maggiore, aritmetica per la minore, geometrica per le dissonanze. Diametralmente opposto era invece l’assunto da cui era partito Eulero: «li principi primi dell’armonia non consistono nè nella proporzione nominata armonica, nè nella proporzione aritmetica, nè nella geometrica, ma unicamente nell’attuale percezione del rapporto dei numeri, che sono tra li suoi» [Euler 1897, 16a]. In altre parole: più facilmente l’orecchio riesce a percepire il rapporto dei suoni costituenti un determinato accordo, più consonante è l’accordo stesso. Il criterio numerico che Eulero dà per valutare il grado di consonanza di un aggregato di due o più suoni è da lui illustrato in una serie di casi ordinati secondo complessità crescente; esso può essere compendiato come segue [Euler 1739, 37-43, 58-61].

1) Un primo fattore indicativo della «semplicità» della proporzione è ottenibile scomponendo i termini primi i termini di quest’ultima e calcolando ciò che Eulero chiama l’«esponente», cioè il loro minimo comune multiplo. Ad esempio si ha (i numeri rappresentano le vibrazioni per unità di tempo):

<table>
<thead>
<tr>
<th>Accordo</th>
<th>Esponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:32 = 1:2^5</td>
<td>1-2^5 = 32</td>
</tr>
<tr>
<td>3:8 = 3:2^3</td>
<td>2^3:3 = 24</td>
</tr>
<tr>
<td>4:5:6 = 2^2:5:3:2</td>
<td>2^2:3:5 = 60</td>
</tr>
<tr>
<td>1:2:3:4:6:12 = 1:2:3:2^2:2:3:2^2:3</td>
<td>2^2:3 = 12</td>
</tr>
</tbody>
</table>
2) Già il matematico veneziano Giovanni Battista Benedetti, nel 1585, si era servito dello stesso fattore per valutare il grado di consonanza dei bicordi [Benedetti 1585, 283]. Per Eulero – che comunque non sembra conoscere l'opera di tale autore – il solo «esponente» invece non basta: il *gradus suavitatis* di un accordo dipende infatti anche dalla «semplicità» dei fattori primi che lo compongono. Tenendo conto di ciò, detto «grado di soavità» si calcola sommando fra loro i divisori primi dell'esponente e sottraendo da tale somma il loro numero meno uno. Per gli esempi precedentemente visti si ha:

<table>
<thead>
<tr>
<th>Accordo</th>
<th>Esponente</th>
<th>Gradus suavitatis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:32</td>
<td>32 = 2^5</td>
<td>(2+2+2+2+2)-(5-1) = 6°</td>
</tr>
<tr>
<td>3:8</td>
<td>24 = 2^3·3^1</td>
<td>(2+2+2+2+3)-[(3+1)-1] = 6°</td>
</tr>
<tr>
<td>4:5:6</td>
<td>60 = 2^2·3·5</td>
<td>(2+2+2+2+3+5)-[(2+2+1+1)-1] = 9°</td>
</tr>
<tr>
<td>1:2:3:4:6:12</td>
<td>12 = 2^2·3^1</td>
<td>(2+2+2+3)-[(2+1)-1] = 5°</td>
</tr>
</tbody>
</table>

Si vede quindi che esponenti diversi possono produrre lo stesso *gradus suavitatis*. Per i principali bicordi Eulero ottiene:

<table>
<thead>
<tr>
<th>Bicordo</th>
<th>Gradus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>1</td>
</tr>
<tr>
<td>1:2</td>
<td>2</td>
</tr>
<tr>
<td>1:4, 1:3</td>
<td>3</td>
</tr>
<tr>
<td>1:8, 2:3, 1:6</td>
<td>4</td>
</tr>
<tr>
<td>1:16, 3:4, 1:5, 1:9, 1:12</td>
<td>5</td>
</tr>
<tr>
<td>1:32, 3:8, 2:5</td>
<td>6</td>
</tr>
<tr>
<td>1:64, 4:5, 3:5, 1:7</td>
<td>7</td>
</tr>
<tr>
<td>5:8, 5:6, 2:7, 8:9</td>
<td>8</td>
</tr>
<tr>
<td>5:9, 4:7, 3:7</td>
<td>9</td>
</tr>
<tr>
<td>9:10, 6:7, 7:8</td>
<td>10</td>
</tr>
</tbody>
</table>

ecc.

Benché questa classificazione – nei risultati – abbia molti punti in comune con quella prodotta dalle moderne teorie della consonanza, essa presenta evidenti anomalie. Nel 5° grado si vede ad esempio che 1:9 (intervallo di seconda in posizione latina) ha lo stesso grado di consonanza di 1:16, 1:12 e 1:5 (rispettivamente intervalli di ottava, quinta e terza maggiore in posizione latina). Spesso volte, inoltre, si ottiene lo stesso «grado di soavità» per i differenti rivolti di un dato accordo; per la triade minore si ha, ad esempio:
C:E₄;G=20:24:30=2²·5·2¹·3·2·3=1·2¹·3·5=14−4=10° grado
E₄;G:C=24:30:40=2¹·3·2·3·5·2¹·5=1·2¹·3·5=14−4=10° grado
G:C:E₄=15:20:24=3·5·2²·5·2¹·3=1·2¹·3·5=14−4=10° grado

Se poi i rapporti musicali fin qui esaminati venissero sia pure insensibilmente temperati — e diventassero quindi irrazionali —, i relativi «esponenti» tenderebbero ad assumere valori infinitamente grandi, facendo classificare come infinitamente dissonanti anche rapporti che in realtà sono quasi perfettamente consonanti.

Il concetto di «esponente» — usato in senso più generale — servì comunque a Eulero per determinare la gamma di intervalli su cui un’intera composizione era basata, e quindi il suo grado massimo di dissonanza. Dato ad esempio l’esponente 12, l’accordo più complesso cui esso può dare origine è dato dall’assieme di tutti i divisori di 12:

1:2:3:4:6:12 = C₁;C₂;G₂;C₃;G₃;G₄

«Quando tutti questi suoni assieme si prendono, la consonanza sarà completa, perché non si saprebbe aggiungere un nuovo suono, senza che ella diventasse più complicata»; il rapporto 3:4, che ha pure 12 come esponente, è invece una consonanza «non completa» [Euler 1897, 16b].

Su questa base, Eulero perviene alla conclusione che il più complicato esponente di una composizione impiegante solo consonanze è 2ⁿ·15, essendo composto dai fattori primi 2ⁿ (ottave), 3 (quinte e quarte) e 5 (terze e seste). Trascursando 2ⁿ (e cioè le ottave), rimane l’esponente base 15:

1:3:5:15 = C₁;G₂;E₄;B₄

che dà luogo alla triade maggiore (C:E:G) e a quella minore (E:G:B) [Euler 1897, 16b].

2. Contrast tra «esponenti» e terzo suono

Nonostante le reciproche espressioni di stima — Tartini figura come il «maggior compositore di questi tempi», mentre in cambio Eulero viene dichiarato «il più dotto uomo di Europa» —, i manoscritti dei due autori rivelano profonde di-
vergenze di idee. Divergenze quasi tutte originate dal fatto che Euler, contrariamente a Tartini, non riconosce l’autorità della serie armonica e della sua giustificazione fisica: il terzo suono. Esaminiamo alcuni dei punti di attrito.

1) Euler osserva che non sempre il terzo suono dà il corretto basso fondamentale e che la pratica dello stesso Tartini «sovente s’allontana da questa regola, come veder si può negli esempi riportati alla fine del suo trattato» [Euler 1897, 16c]. Critica incontrovertibile: la triade minore — come abbiamo già rilevato nell’esempio 4 — genera ad esempio ben due terzi suoni non equisoni col fondamentale, di cui quello grave è per di più dissonante.

2) Nel §1 abbiamo visto che secondo Tartini le dissonanze sono caratterizzate dal contenere due consonanze dello stesso genere non basate sulla stessa nota (e ciò in seguito ad arbitrarie manipolazioni sulle serie). Euler fa invece osservare che il limite delle consonanze è costituito dall’esponente 3 - 5 = 15 e che si ha dissonanza ogniqualvolta nell’esponente compare un 3° o un 5°, con n > 1: la regola di Tartini non è quindi altro che un caso particolare di quest’ultima [Euler 1897, 16d].

3) Sempre riguardo allo stesso problema, Euler rimprovera a Tartini di avere trattato come consonanza la sesta superflua [Euler 1897, 16c-d]. Quest’ultimo si giustifica dicendo che nell’accordo

\[B_3 : D : F : G# = 1000 : 800 : 675 : 576 \]

(i numeri questa volta rappresentano le lunghezze di corda vibrante) si ha F:G\# = 7:6, per cui le quattro note sono assai prossime alla proporzione armonica 1/4 : 1/5 : 1/6 : 1/7 [Tartini 1992, 17c]; il tutto verrà più esplicitamente spiegato nel Trattato del 1754 [Tartini 1754, 158-63]. A causa del particolare sistema sintonico adottato, la quinta B₃-F è ristretta di 81:80. Secondo Tartini, la corretta notazione di tale accordo avrebbe dovuto essere B₃-D-F-A₅, risultando B₃:A₅ = 7:4 una settima «armonica».

4) Nonostante tutto, Tartini — certamente anche per ragioni di convenienza «politica» — si sforza di vedere una sostanziale analogia tra gli esponenti di Euler e il suo terzo suono: entrambi infatti si calcolano come minimo comune multiplo
dei due suoni dati. Non fa però sufficientemente rilevare che lui
opera sulle lunghezze di corda vibrante, ed Eulero invece sulle
frequenze. Effettuando i calcoli su grandezze omogenee, i risul-
tati sarebbero in realtà ben diversi; per l’intervallo di 6° mag-
giore ad esempio si ha:

- terzo suono: $3:5 \rightarrow 15$ (lunghesse); $1 \leftarrow 3:5$ (frequenze)
- esponente: $3:5 \rightarrow 15$ (frequenze); $3:5 \rightarrow 15$ (frequenze).

Se si fosse servito delle frequenze, l’italiano avrebbe quindi
dovuto trovare il massimo comune divisor e impostare tutte le
sue speculazioni sulla serie aritmetica, anziché armonica.

5) Tra il terzo suono e le due note che lo generano, Tartini
inserisce dei termini in modo da completare la serie armonica
(con ciò il basso fondamentale dell’intero accordo rimane il
terzo suono). Ottiene cioè, in lunghesse di corda vibrante:

- quinta (3:2) : $6 : 3 : 2 = C_1 : C_2 : G_2$
- quarta (4:3) : $12 : 6 : 4 : 3 = C_2 : C_3 : G_2 : C_3$

Eulero scompone invece l’esponente nei suoi divisor, otte-
nendo le seguenti frequenze delle consonanze complete:

- quinta (2:3) : $1 : 2 : 3 : 6 = C_1 : C_2 : G_2 : G_3$

A tale riguardo, Tartini fa rilevare che, mentre nelle sue
serie armoniche l’accordo perfetto si accresce con regolarità, in
quelle di Eulero alcuni termini risultano mancanti (il terzo ac-
cordo è ad esempio privo di quinta), mentre altri sono addirit-
tura dissonanti (vedi la settima C-B dell’ultimo accordo). Tale
sua critica — già presente nella «risposta», sia pure con alcuni
errori numerici [Tartini 1992, 17d-e] — ricomparirà nel De’
principi del 1767, con la seguente drastica conclusione: «È dunque
assolutamente falsa la suddetta formola fondata sui divisor
integrali, perché non reggendo alla sesquiquinta [= 6:5], ragio-
ne integrale del consonante sistema, non regge all’intiero siste-
ma» [Tartini 1767, 9]. Nella «risposta» si era comunque dimo-
strato più diplomatico, lasciando intendere che ciò dimostrava
la necessità – per Eulero – di appoggiarsi ad un buon musicista. L’implicita proposta di collaborazione non ebbe però alcun seguito, dato che i contatti tra i due armonisti non sembra abbiano avuto ulteriori sviluppi [Petrobelli 1965, 81-82].

Bibliografia

Barbieri, P.

1990b La «Nuova teoria di musica» di Alessandro Barca in un inedito esame di Giordano Riccati, in Studi in onore di Giulio Cattin, a cura di F. Luisi, Roma, Torre d’Orfeo, pp. 159-176.

Benedetti, G. B.
1585 Diversarum speculationum mathematicarum, et physicarum [...], Torino, Bevilacqua.

Boccadoro, B.

Capri, A.
1945 Giuseppe Tartini, Milano, Garzanti.

Euler, L.
1739 Tentamen novae theoriae musicae, San Pietroburgo, Accademia delle scienze.

1897 Esame del Trattato di Giuseppe Tartini, in G. Tebaldini, Giuseppe Tartini. Appunti storico-critici. I. Tartini ed Euler, in

Petrobelli, P.

Planchart, A. E.

Riccati, G.

Tartini, G.
1754 Trattato di musica secondo la vera scienza dell’armonia, Padova, Stamperia del Seminario.
1767 De' principi dell'armonia musicale, Padova, Stamperia del Seminario.

Tartini, G.- Riccati, G.
Commercio di lettere intorno ai principi dell'armonia fra il Signor Giuseppe Tartini ed il Conte Giordano Riccati; carteggio risalente agli anni 1759-1768, conservato nella sezione di Pirano dell'Archivio Regionale di Capodistria, n. 57 (vecchia segnatura n. 174). Per questo contributo ho utilizzato la riproduzione fotografica gentilmente concessami in visione dal Centro Studi Antoniani di Padova, Fondo Frasson, Pacco 2, Cartella 2.
Walker, D. P.