STORIA DELLA MUSICA AL SANTO DI PADOVA

Patrizio Barbieri

GLI ARMONISTI PADOVANI NEL SETTECENTO

(Estratto)

Neri Pozza Editore, Vicenza
1990
Introduzione

Nel corso del XVIII secolo la cappella musicale Antoniana ebbe un notevole peso non solo nella pratica, ma anche in campo teorico: i due maggiori sistemi armonici dell’Illuminismo italiano furono infatti formulati da musicisti appartenenti al suo organico.

Il primo di tali sistemi — che per circa un secolo caratterizzò la stessa pratica compositiva dei maestri di cappella della basilica — fu concepito da Francescanantonio Calegari (1656-1742); venne successivamente rielaborato da Francescanantonio Vallotti (1697-1780), al quale si affiancò il matematico trevigiano Giordano Riccati (1709-1790). Nel § 1 verrà provato che tali autori ebbero il grande merito di avere anticipato Jean Philippe Rameau nella formulazione dei due concetti che stanno alla base dell’armonia modernamente intesa: (i.) armonica identità di un accordo coi suoi rivolti (ante 1721), (ii.) origine della scala diatonica delle triadi consonanti basate sul I, IV e V grado (1735). Contrariamente a Rameau, i teorici padovani non si affrettarono però a rendere note queste loro scoperte a mezzo stampa; oltre che a causa di ciò, la loro scuola rimase limitata ad un ambito locale anche perché — prescrivendo un impiego delle dissonanze ancor oggi giudicato troppo ardito — incontrò forti opposizioni da parte dei compositori.

Il secondo sistema è quello che Giuseppe Tartini, il «maestro delle Nazioni», fece conoscere attraverso il Trattato di musica da lui pubblicato nel 1754. Benché di impianto puramente speculativo — e quindi senza riflessi sulla pratica compositiva —, in campo europeo tale sistema ebbe una risonanza paragonabile a quello di Rameau. Esso si basa sul ‘terzo suono’, fenomeno acustico la cui scoperta è rivendicata dallo stesso Tartini, il quale però a tale riguardo non allega alcuna documentazione probante: nel § 3 vedremo che fortunatamente è stato possibile reperire una lettera del 1738, finora ignorata dagli studiosi, che conferma tali sue rivendicazioni.
1. La «scuola dei rivolti» di Calegari e Vallotti

Padre Francescantonio Calegari, rifacendosi formalmente ad alcune licenze praticate già dal secolo XVI, nel secondo decennio del Settecento stabilì una pratica armonica che estendeva il maneggio delle dissonanze all’estremo limite teoricamente possibile. Mentre fino ad allora l’impiogo di queste ultime era rimasto per lo più limitato ad alcuni rivolti dell’accordo di 7ª, in base alle nuove regole era ad esempio consentito:

– servirsi di tutti i rivolti degli accordi dissonanti di 7ª, 9ª, 11ª, 13ª, 14ª (da cui il nome di «acuola dei rivolti»);

– fare sentire le dissonanze assieme alle loro note di risoluzione (assai caratterizzante — tanto per citare un’ardita formula che si riscontra in molte composizioni della sua scuola — è il ‘cluster’ formato dagli accordi di 3ª e 6ª, uno sovrapposto all’altro: cfr., più avanti, Esempio 8). Tale teoria è dettagliatamente illustrata in un suo trattato del 1732, rimasto manoscritto (8). Benché non si serva mai del termine «basso fondamentale» (come invece faranno Vallotti e Riccati), Calegari dimostra di aver chiaramente compreso il concetto di ‘inversione’ delle note di un accordo (29, 166).

La sua tavolozza armonica, con la relativa numerica, viene compendiata nell’Esempio 1.

Inutile ricordare che i ‘rivolti’ delle dissonanze superiori alla 7ª sono tuttora banditi dalla quas totalità dei trattatisti; anzi, Vallotti ricorderà che a quei tempi alcuni maestri non ammettevano neanche quello della 7ª (34, 299).

Secondo la scuola padovana, «a fronte di qualunque dissonanza può
stare l’intiero accordo consonante» (34, 329). Considerato quest’ultimo esteso fino alla 15ª (cioè alla doppia ottava), in base a tale postulato tutte le possibili combinazioni dissonanti vengono ottenute aggiungendo — una o più alla volta — le note rimaste vacanti (7ª, 9ª, 11ª, 13ª, 14ª). Il significato armonico di tali accordi è il solito: quello di 7ª (o il suo equivalente di 14ª) risolve in un’amormonia differente dalla sua, mentre i rimanenti risolvono generalmente nella stessa amormonia. Benché la 9ª scenda all’8ª, l’11ª alla 10ª e la 13ª alla 12ª, tutte queste dissonanze non vengono però considerate delle sospensioni, dato che «un suono accidentale all’amormonia, qual è quello della dissonanza, non ha facoltà di escludere un suono essaenziale all’amormonia stessa, qual è quello della consonanza, qualunque sia» (34, 303); contrariamente a quanto prescritto dall’amormonia tradizionale, la nota di risoluzione compare quindi contemporaneamente alla dissonanza, mandando con ciò a gambe all’aria anche tutti gli obblighi di distanza fra queste due note.

Fra le composizioni di Calegari a noi pervenute — quasi tutte manoscritte —, la prima che testimoni la sua conversione alla teoria dei rivolti è il Kyrie con strumenti datato «Padoa 1721, mese di Settembre» (Esempio 2). In esso sono infatti accuratamente segnate quasi tutte le numeri-
che già incontrate nell’Esempio 1, compresa la durissima ‘prima armonia’ in posizione stretta dell’accordo di 11ª (cifrata con 3-4-5). Si può anche trovare l’accordo $\frac{7}{3}$ da lui formalmente interpretato come 11ª e 13ª unite alle rispettive note di risoluzione (combinazione che può essere interpretata quasi come una sorta di contrassegno della scuola del Santo).

La fortunata sopravvivenza di questa composizione permette quindi di convalidare il «sincero racconto» di padre Vallotti, secondo cui «il p. Calegari aveva cominciato a comporre nel suo modo tanti anni avanti che uscisse alla luce il Trattato di Mr. Rameau», del 1722 (34, 287). Essa permette anche di constatare che Calegari non ebbe certo la mano leggera nell’applicare alla pratica le sue innovazioni armoniche; nel 1781 Giordano Riccati farà osservare che Tartini e Vallotti erano mostrati assai più moderati a riguardo (23, 169).

Calegari sosteneva di aver fondato il suo sistema sulla «Palestrinesca pratica» (8, 179). E in effetti non è infrequente trovare nelle opere di alcuni polifonisti del Cinquecento — come Giovanni Pierluigi da Palestrina, Cristòbal de Morales e Costanzo Porta — passi in cui le dissonanze sono trattate come ‘suoni aggiunti’ all’armonia consonante: Riccati ne riporterà alcuni, fra i quali è stato scelto l’Esempio 3.

Anche Vallotti, che aveva applicato la numerica del basso continuo ad almeno sette grandi messe di Palestrina (12, 11), diceva di Calegari: «Conobbe che le parti mezzane, come le parti acute, possono trasferirsi al grave e diventare un basso continuo; che un componimento a più voci si può eseguire con altrettanti strumenti da tasto formandosi di tutti assieme una perfetta armonia» (34, 287).

Riccati ci fa sapere che — anteriormente a Calegari — di tale «Palestrinesca pratica» si erano avvalsi altri autori, fra i quali segnala con par-
ticolare enfasi Agostino Steffani (21, 10). Lo stesso autore ci informa che ai suoi tempi era «frequente nei recitativi il passo [riportato nell’Esempio 4], in cui C base dell’accordo di Terza, e Quinta diventa Undecima rivoltata, e poi torna ad essere equisonanza, come nel precedente accordo C3» (25, 179). Secondo Sven Hansell, nella prassi continuistica del recitativo semplice — fino alla metà del secolo XVIII — non era affatto insolito anche far sentire le dissonanze assieme alle loro note di risoluzione (13, 280).

Come abbiamo visto, il manoscritto lasciato da Calegari consiste in un trattato eminentemente pratico di armonia. La sua elaborazione formale fu iniziata da Vallotti e successivamente perfezionata da Riccati, il che — sia detto per inciso — provocò fra i due l’insorgere di una polemica riguardante questioni di priorità: Riccati infatti pubblicò un buon compendio delle sue teorie nel 1762 (19), mentre invece Vallotti indugiò fino al 1779, facendo per di più uscire un volume che in pratica può essere considerato una semplice premessa al suo trattato (33); per maggiori dettagli sul metodo di indagine seguito dal matematico trevigiano cfr. 3, § 2.

Il documento in base al quale il matematico trevigiano rivendica la priorità della scoperta è ancora conservato fra i suoi manoscritti e la sua autenticità confermata dalla lettera di risposta inviatiagli da Vallotti — datata 13 gennaio 1735 —, nella quale il religioso esprime ampie lodi e aggiunge di essere anch’egli già pervenuto alle stesse conclusioni (10, 1-
7). In detto documento Riccati esamina la numerica degli accordi con cui Vallotti accompagna la scala diatonica, rilevando che questi ultimi si riducono semplicemente alle triadi consonanti basate sul I, IV e V grado, che chiama «note fondamentali» (Esempio 5). In base ai suoi criteri di classificazione delle consonanze — che ho già esaminato in altra sede (1, 94-96) — osserva che tali triadi costituiscono una «ottima armonia», mentre il basso fondamentale a sua volta si muove dando origine a una «ottima melodia»: la scala così prodotta, ‘ottima’ sia armonicamente sia melodicamente, è quindi la più perfetta fra quelle possibili.

Il sistema armonico di Riccati e Vallotti presenta alcune componenti di carattere ‘estetico-psicologico’ che caratterizzeranno altre teorie più moderne. Ciò permette loro di dare ad esempio una sistemazione formale alla triade di sensibile (B-D-F, in C maggiore). Benché la 5ª in oggetto sia diminuita, essa viene da loro ancora classificata come consonante — sia pure «per rappresentanza» — perché in certe progressioni armoniche ‘rappresenta’ per analogia la 5ª (Esempio 6) (19, 10 e 34, 342); tale impostazione è già menzionata da Riccati in una lettera del 1738 (10, 29-32). Nel secolo successivo — pur disapprovando i ‘rivolti’ padovani — Fétis farà sua questa ipotesi, riconoscendo che «Vallotti ha be-

Esempio 6 - Da una lettera di Giordano Riccati a Giovenale Sacchi, Treviso, 6 ottobre 1780 (Udine, Biblioteca Comunale, Ms. 1025-IX, p. 252).
nissimo compreso che quest’accordo non risponde ad alcuna condizione tonale dei modi maggiore e minore, non si fa che per analogia in una progressione di accordi perfetti non modulante. È singolare che gli armonisti più moderni siensi mostrati su questo punto meno avanzati» (11, 179).

Riccati e Vallotti presentano delle teorie che divergono fra loro solo su due questioni di carattere puramente formale: (i.) definizione di consonanza; (ii.) genesi delle dissonanze (Riccati deriva queste ultime dalla serie armonica, mentre Vallotti — manifestando a tale riguardo idee perfettamente coincidenti con quelle di Tartini, come più avanti vedremo — le ricava dalla serie geometrica) (24, 68-70, 80).

Entrambi però concordano su alcune critiche al sistema di Rameau, del quale condividono solo il concetto di inversione degli accordi e il basso fondamentale della scala diatonica ascendente (basso che però ritengono di poter giustificare anche senza dover ricorrere all’espediente del «double emploi»). Il sistema ramista viene da loro attaccato dalle basi, negando cioè che i fondamenti dell’armonia siano interamente ‘fisico-matematici’ e rigettando l’autorità della «résonnance du corps sonore» con delle argomentazioni — ancor oggi valide — che altri studiosi riprenderanno nel secolo seguente (22, 49-50). La macchinosità con la quale Rameau cercava di adattare i vari accordi ai suoi schemi prestabiliti — smontandone e rimontandone gli intervalli costituenti come se fossero pezzi di un meccano — portava inoltre ad alcuni risultati in netto disaccordo col maneggio delle dissonanze. Sintomatico è ad esempio quanto Vallotti scrive a Riccati nell’agosto 1738: «Il Trattato di Mr. Rameau quanto m’appagò, e piacque in leggendolo nel principio, e fin dove discorre dell’accordo consonante, di cui non dubbio ha rinvenuto il vero, ed unico principio, altrettanto m’è paruto insussistente, ed ispiacque, tosto che giunse dove parla dell’origine delle dissonanze; quindi è che annojato, e disgustato mi rallentai a tal segno, che ne lessi poi qualche cosa per salto, fuggendo però sempre i luoghi dove parla delle dissonanze» (10, 33).

Le critiche dei nostri due armonisti si concentrarono soprattutto sugli accordi di 7ª «per imprestito», e sulle 9ª e 11ª «per sottoposizione» (della 13ª Rameau non parla). Al fine di non creare equivoci alla sua «basse fondamentale», la 9ª C-E-G-B-D viene ad esempio da Rameau ottenuta partendo dall’accordo di 7ª E-G-B-D e ‘sottoponendogli’ il C in 3ª maggiore (il basso fondamentale di tale 9ª resta però l’E); per l’11ª parte invece da G-B-D-F, al quale poi sottopone il C in 5ª (il basso fondamentale questa volta diventa il G!) (22, 76-79). È quindi assai giustificata la rea-
zione di Vallotti — che pure ammette la generazione geometrica delle consonanze —, secondo cui il francese tali accordi «neppure doveva sognarseli, se avesse ben inteso il sistema delle dissonanze e l'indole loro, che è di riferirsi tutte ad una sola base» (34, 366).

Tutte queste incongruenze sono indubbiamente dovute all'imposta-zione metodologica adottata da Rameau, il quale — partendo dalla corda vibrante — attraverso speculazioni improntate ad una pretesa oggettività di tipo ‘fisico-matematico’ giunge alle leggi armoniche che dovrebbero soddisfare l'orecchio del ‘buon selvaggio’ non viziato dall’arte: proponendo quindi una teoria a priori. Per gli armonisti padovani — e soprattutto per Riccati, che sembra poco incline ad assecondare certi aneliti ‘fisico-matematici’ di Vallotti — il dato di ‘esperimento’ è invece costituito dal suono già filtrato dal giudizio fisiologico e culturale dell'orecchio; rifuggendo da giustificazioni di tipo puramente fisico e appoggiandosi preferenzialmente all’analogia e alla psicologia, essi anticipano in certo qual modo la tendenza delle moderne scuole di pensiero. Una teoria empirica dedotta dalla pratica dei grandi maestri — diceva Donald Tovey circa mezzo secolo fa — è certamente preferibile a speculazioni pseudoscientifiche basate su naturali principî di acustica (14, 413).

2. Barca, Sabbatini, A. Calegari

Di tutte le moderne teorie armoniche, quella della scuola padovana è forse l’unica ad essere stata coerentemente messa in pratica da parte dei musicisti che la proposero, contribuendo quindi a costituire pregi e difetti delle loro composizioni. Per quanto ad esempio riguarda Vallotti, i caratteri distintivi della sua produzione vengono riassunti da padre Alessandro Barca, che gli fu molto vicino negli ultimi vent’anni di attività. Essi sono i seguenti (4):

a. «Straordinaria sonorità, o pieznea dell’armonia», dovuta al «frequente, ma opportuno uso» di 7°, 9°, 11°, 13° e 14°.

b. Armonizzazione che sempre ‘asseconda e rinforza’ il canto. Questo pregio si riscontrerebbe più in Vallotti che in altri compositori del suo tempo, dato che tali accordi dissonanti (i...) potendosi presentare sotto forma di quattro rivolti (o di cinque, qualora contengano due note dissonanti), si adattano con facilità a qualunque «parte acuta, o media, nella quale si trovi il canto principale» e (ii...) riescono meglio a seguire le modulazioni, dato che «da lui si risolvono contro il costume de’ Pratici moderni non solamente nella stessa armonia, in cui furono introdotte, ma in un’altra eziandio».
c. «Squisitezza del canto», dovuta alle frequenti modulazioni. Prego quest’ultimo che però può trasformarsi in «difetto», dato che talvolta tali sue modulazioni sono troppo rapide o portano a toni più lontani «di quello che ne soffra il senso». Benché di «effetto mirabile» nei pieni e anche nei concertati, a causa di ciò la frase vallottiana «non sempre riesce a gusto di tutti nel canto di una parte sola» (cfr. anche 1, 238).

Nella sua analisi, Barca omette un’altra caratteristica della scuola padovana, rappresentata dalle quinte parallele — sia pure abilmente camuffate — inevitabilmente generate nel corso della risoluzione di accordi dissonanti del tipo $11\frac{7}{9}$ e $13\frac{5}{9}$ (su tale ‘pseudo-eterofonia’ cfr. 13, 288).

È con la Nuova teoria di musica, prolissa opera apparsa a puntate tra il 1786 e il 1809, che Alessandro Barca si propone di rendere ragione dell’uso dei rivolti e della «straordinaria sonorità» dell’armonizzazione di Vallotti. Per quanto riguarda i primi, essi sono giustificati dalla sua teoria delle consonanze, che ho già esaminato in altra sede: benché assai macchinoso, ricorderò che — sempre limitatamente ai rivolti — tale teoria porta a conclusioni equivalenti alla ‘risonanza’ di Rameau (1, 87-91 e 16, 31).

Per spiegare poi l’effetto delle dissonanze, Barca dichiara invece di appoggiarsi ad una dottrina che ha molto in comune con quella formulata da Pierre Estève nel 1751: con riferimento all’Esempio 7, sostiene cioè

Esempio 7

![Esempio 7](image)

che la ‘pienezza’ degli accordi di 7ª e di 9ª è dovuta al fatto che le dissonanze aggiunte rinforzano alcuni armonici della triade sottostante. Oggi sarebbe facile obiettargli che se avesse esteso la sua attenzione al complesso degli armonici non coincidenti, avrebbe al contrario notato un peggioramento generale della situazione. Inoltre lui stesso fa rilevare che tale criterio non risulta applicabile all’11ª, accordo per il quale è costretto ad escogitare una giustificazione ancora più malferma (5, 214-219).

Maestro di cappella del Santo, dal 1786 al 1809, fu il romano padre Luigi Antonio Sabbatini. Due suoi trattati, usciti rispettivamente nel 1799 e nel 1802, furono determinanti nel far conoscere le tecniche val-
lottiane (27 e 28). Le ripercessioni di tali opere si fecero sentire anche oltralpe: il più autorevole teorico francese dell’epoca, Alexandre Choron, nel 1808 diede alle stampe un trattato — dal significativo titolo di *Principes de composition des écoles d’Italie* — interamente basato sulla teorica di Sabbatini. In esso le numeriche e i rivolti delle dissonanze coincidono con quanto già visto nell’Esempio 1, con la sola eccezione che queste ultime vengono maneggiate come sospensioni (solo nelle composizioni a due cori Choron sembra permettere che la dissonanza e la sua nota di risoluzione compaiano contemporaneamente nella stessa ottava) (9, 77-79). Tale lavoro ebbe comunque molti critici, a cominciare da Féélis.

La notevole azione ‘promozionale’ svolta dalle opere teoriche di Sabbatini costitui certamente l’apporto più significativo di questo autore. Entrato in contatto con la produzione vallottiana quando era ormai cinquantaquattrenne, per quanto riguarda la pratica egli non mostra però di essersi adeguato con decisione allo stile padovano: in alcune centinaia di pagine di sue composizioni da me esaminate presso l’Archivio musicale della cappella Antoniana — coprenti un arco di tempo che va dal 1791 al 1804 — le dissonanze superiori alla 7a compaiono infatti quasi esclusivamente in posizione fondamentale. Sempre in tali composizioni, il caratteristico ‘marchio’ della scuola — e cioè l’accordo di $\frac{5}{3}$ presentato contemporaneamente alla sua risoluzione $\frac{5}{3}$ — si riscontra poi solo nella *Messa per i defonti a otto voci*, del 1803 (Esempio 8).

Esempio 8 - *Luigi Antonio Sabbatini*, *Messa per i defonti a otto voci con strumenti non obbligati*, Padova 1803 (Padova, Archivio musicale della Cappella Antoniana, Ms. B.IV. 856, pp. 53-54). Da notare gli accordi 3-4-5-6 e 3-5-2-4. (Composizione gentilmente segnalatami da padre Leonardo Frasson).
Fra i successori di Sabatini al Santo figura Antonio Calegari, divenuto maestro di cappella nel 1814 dopo esserne stato primo organista dal 1801. Secondo il suo biografo, tale autore sarebbe pervenuto ai rivolti della scuola padovana per via indipendente (17, 9). Di lui ci rimane un trattato postumo, la cui teoria coincide sostanzialmente con quella di Vallotti (7, 73-88): la numerica è però in alcuni casi differente, dato che Calegari tratta le dissonanze come sospensioni, per cui evita che nella stessa ottava compaia anche la nota su cui esse risolvono (regola — quest’ultima — che però nella pratica non sempre rispetta, come si evince dall’Esempio 9). Anche nell’ultima memoria di Alessandro Barca, pubblicata nel 1809, si nota del resto che 9ª, 11ª e 13ª hanno ormai riassunto il loro antico «carattere di sospensione», per cui Barca raccomanda senza mezzi termini «che non si trovino vicini mai nella medesima otta- va i due suoni uno dissonante e l’altro consonante, nel quale si risolve il primo» (5, 191).

Concludo ricordando che la ‘Scuola dei rivolti’ contò proseliti — sia pure non numerosi — anche al di fuori della cappella musicale del Santo (di essi mi sono occupato in 3, § 5).

3. Tartini e la prioritā del ‘terzo suono’: nuovi contributi

Un altro importante teorico appartenente alla cappella Antoniana fu Giuseppe Tartini, che vi figurò come primo violino e ‘capo di concerto’ dal 1721 al 1770, anno di morte. Riguardo al ‘terzo suono’, egli asserisce che — dopo averlo scoperto per caso nel 1714 — lo adottò sistemi-
camente come guida per l’intonazione a partire dal 1728, anno in cui fondò a Padova la sua celebre scuola di violino (31, 36). A tale riguardo, la sola documentazione oggettiva finora nota agli studiosi è però costituita da alcune sue lettere inviate a padre Martini nel 1751 e dal Trattato del 1754: dato che a tale scoperta pervennero anche Georg Andreas Sorge (1744) e Jean Baptiste Romieu (1751), non tutti gli storici della scienza si sono quindi mostrati disposti a credere a Tartini sulla parola. Posso comunque segnalare che la prova mancante si trova alla Biblioteca Comunale di Udine, e consiste in una lettera del 30 giugno 1738 — inviata da Francescantonio Vallotti a Giordano Riccati (10, 27-28) — in cui «la rissonanza osservata dal Sig. Tartini» viene non solo menzionata, ma anche identificata in frequenza di vibrazione col massimo comun divisore dei due suoni generatori (Figura 1).

Figura 1 - F. Vallotti e G. Riccati (Udine, Biblioteca Comunale, Ms. 1027, p. 27). La lettera continua a p. 28; essa costituisce il primo documento nel quale viene menzionato il ‘terzo suono’ scoperto da Tartini.
Accertato questo limite ante quem, farò ora seguire qualche altra considerazione sui rilievi sperimentali del violinista istriano, tendenti a spiegare queste leggi (cfr. anche 2, 184-86).

Intorno alla metà del Settecento, la ‘isonanza’ di Tartini e quella di Rameau venivano comunemente considerate due fenomeni reciproci. Nel 1767 Riccati ad esempio scrive: «si spiegano cogli stessi principj due sperienze una reciproca dell’altra, cioè, toccata una corda, si sentono i suoni delle sue parti aliquote [= gli armonici superiori], ed all’opposto stimolate al suono due parti aliquote, s’ode il suono della più picciola corda intera, che possa da esse parti essere misurata», cioè il ‘terzo suono’ (20, 83-86). Sempre nel 1767, la stessa regola — già trovata da J.B. Romieu nel 1751 (26, 11-12), ma che per la prima volta era comparsa nella citata lettera di Vallotti del 1738 — viene fornita anche da Tartini: la lunghezza di corda vibrante corrispondente al terzo suono è data dal prodotto delle lunghezze di corda delle note costituenti l’intervallo, espresse nel rapporto più semplice (cioè dal loro minimo comune multiplo); ad esempio, per la quinta 8:12 (= 2:3) si ha 2 × 3 = 6 (31, 5).

Benché prima del 1767 non la menziono, dagli esempi inviati a padre Martini nel 1751 (2, 185) e poi inseriti nel Trattato del 1754 (Esempio 10) appare chiaro che già in quegli anni Tartini doveva essere in possesso di detta regola, con la sola variante che il terzo suono da essa fornito veniva da lui trasposto all’ottava superiore: negli esempi citati si osserva infatti che ogni rapporto a : b dà luogo ad a × b/2. Avanzo quindi l’ipotesi che anche nel Trattato Tartini si sia astenuto dall’assegnare il terzo suono all’intervallo di ottava perché la sua regola inaspettatamente lo poneva all’unisono con la nota superiore di detto intervallo (1×2/2 = 1), invece che nel grave come in tutti gli altri casi. Per quale ragione egli poi abbia modificato una formula che invece figura correttamente già nella citata lettera del 1738, non si sa; tanto più che ancora prima della
pubblicazione del Trattato — tramite Vallotti — Riccati si era premurato di avvisarlo di tale errore di ottava (23, 173-174); e questa è probabilmente la ragione di alcuni dubbi sull’effettiva ubicazione del terzo suono espresso da Tartini nella stessa opera (30, 170). Si può solo supporre che quest’ultimo, avendo ormai impostato sulla ‘radice’ 1/2 le dimostrazioni geometriche relative al suo cerchio armonico, non riuscisse su due piedi ad adattarle alla nuova verità.

Riguardo alla formula del 1767 (= a × b), i musicologi che si sono finora occupati di Tartini (cfr. ad esempio 35, 137-8), fanno osservare che essa dà corretti risultati solo per i rapporti superparticolari, cioè del tipo m:(n+1); vi sono infatti da loro assunto che il terzo suono generato da due frequenze \(f_1 > f_2 \) sia dato da \(f_1 - f_2 \), cioè dalla formula volgarmente detta ‘di Helmholz”. In realtà, secondo gli esperimenti condotti da Rudolph König verso la fine del secolo scorso, il terzo suono rilevato dall’occhio sarebbe pari al più grave dei due valori:

\[
\begin{align*}
&f_1 - f_2 \text{ (suono differenziale del 1° ordine)} \\
&2f_2 - f_1 \text{ (suono differenziale del 2° ordine)},
\end{align*}
\]

valori che solo in alcuni casi particolari sarebbero udibili contemporaneamente (sulla teoria di König, che in parte correge quella di Helmholz, cfr. 26, 12-13).

Che i suoni differenziali del tipo \(2f_2 - f_1 \) fossero in certi casi preminenti rispetto a \(f_1 - f_2 \) era già stato intuito nel 1827 dal barone François A. Blein (36). Esperienze effettuate da Max F. Mayer nel 1957 (15) hanno confermato che gli unici suoni udibili generati da due frequenze \(f_1 \) e \(f_2 \) sono quelli indicati da König: la comparsa di uno o dell’altro (o di entrambi) — sempre secondo Mayer — dipenderebbe dall’ambito di frequenza in cui l’intervallo viene emesso.

Questa teoria è in accordo, sempre a meno del solito errore di ottava, con dati forniti da Tartini (Esempio 10) e spiega quindi perché egli abbia inaspettatamente assegnato un suono differenziale del 2° ordine agli intervalli di 6° minore (8:5) e di 7° minore ‘armonica’ (7:4): dal Trattato risulta infatti incontestabilmente che il suo terzo suono è il risultato di ripetuti rilevamenti sperimentali (Figura 2). Sempre nei casi contemplati dall’Esempio 10, l’operazione \(2f_2 - f_1 \) non fa del resto altro che trasformare in ‘superparticolari’ gli intervalli che non lo sono. Da notare che il prevalere del suono differenziale del 2° ordine nei rapporti 8:5 e 7:4 dovette certamente rendere un grande servigio a Tartini, dato che — con riferimento ai rispettivi accordi C-E-C e C-B♭ — gli confermavano in C il corretto basso fondamentale.
debito di spiegare. Da un suonatore di Violino si suonino equitemporaneamente con arcata forte, e sostenuta i seguenti intervalli perfettamente intonati. Si sentirà un terzo suono effetto distintuibile, e chiude musica.

Lo stesso succederà, se saranno suonati gli esofati intervalli da due suonatori di Violino di lontani a loro cinque, o sei passi, suonando ciascuno la sua nota nello stesso tempo, e sempre con arcata forte, e sostenuta. L'uditor posto nel mezzo rispettivo de' due suonatori sentirà molto più quello terzo suono, che vicino a ciascuno de' due suonatori: segno fisico evidente della cagione del terzo suono, ch'è l'urto de' due rispettivi volumi d'aria mossi dalle vibrazioni delle due corde suonate. Si avrà lo stesso effetto da due suonatori di Oboè posti tra loro in molto maggiore distanza. Essendo il suono dell'Oboè più forte del suono del Violino, si sentirà meglio il risultato terzo suono, e nel mezzo rispettivo de' due suonatori si sentirà egregiamente, sebbene si sente abbastanza in qualunque fisio. Dedotti tutti i terzi suoni, che fisicamente risultano da qualunque figura.

Figura 2 - Da GIUSEPPE TARTINI, Trattato [...], Padova 1754, pp. 13-14.

4. Tartini armonista

Sul terzo suono da lui scoperto, Tartini trovò anche il modo di porre le basi fisiche di una nuova teoria armonica. Vediamo rapidamente come.

Già il fenomeno della risonanza di Rameau suggeriva che «il sistema armonico si risolve nella unità, come in suo principio» (30, 13). Dall'Esempio 11 si può infatti constatare che le armoniche superiori — le cui lunghezze di corda vibrante costituiscono una proporzione armonica — nel loro complesso danno all'orecchio l'impressione di formare un unico suono, pari al generatore 1. Una conferma di ciò si può trovare in quegli strumenti musicali in cui gli armonici vengono rinforzati artificialmente, come nell'organo (registri di Principale, Ottava, XII, XV, XVII, XIX inseriti contemporaneamente). Tartini ritiene però che la 'risonan-
za' ramista non provi in modo decisivo i legami tra il suono generatore e l’intera serie armonica; fra tutti i suoni previsti dall’Esempio 11 afferma infatti che si distinguono nettamente solo 1, 1/3 e 1/5 (1/2 e 1/4 — essendo ottave replicate — si confondono con il fondamentale 1, e sulla loro reale esistenza esprime addirittura delle riserve: 30, 170).

Per il nostro autore, il terzo suono offrirebbe invece una prova più generale a riguardo, essendo fisicamente dimostrato che l’intera serie armonica genera l’unità come terzo suono (Esempio 12). Quest’ultimo co-

Esempio 12

stituisce quindi un vero basso fondamentale (e tale sua teoria, almeno per la scala diatonica maggiore già incontrata nell’Esempio 5, sembra perfettamente funzionare). Questa conclusione non deve sorprendere, dato che la base fisica del suo sistema — se ricordiamo la definizione che allora veniva data del terzo suono — è in perfetto dualismo con quella di Rameau.

Dimostrata così la vera essenza dell’armonia, Tartini suddivide armonicamente un monocordo di lunghezza unitaria, ricavandone le tre serie dell’Esempio 13 (30, 50-52):

1a serie — è la «sestupla armonica» fondamentale ($l = 1/n$): dà origine al modo maggiore (C-E-G);

2a serie — è costituita dai ‘residui’ della precedente ($l = 1 - 1/n$): genera il modo minore (C-E♭-G) e la sottodominante F (da notare che i numeratori si succedono in progressione aritmetica);

Esempio 13a

1a serie + 3a serie
3^a serie — si ottiene moltiplicando fra loro i corrispondenti termini delle prime due: come si vede dall’Esempio 13b, essa dà luogo alle dissonanze; queste ultime sono quindi caratterizzate dal contenere due intervalli consonanti dello stesso genere basati su due note differenti (C-G e G-D nella 9^a, G-C e C-F nell’11^a, C-E e E-G# nella 12^a aumentata, E-G e G-Bb nella 14^a minore).

Per Tartini, in ultima analisi, il modo maggiore trae origine dalle serie armonica, il modo minore dalla serie aritmetica e le dissonanze da quella geometrica.

Tale dottrina presenta molti punti deboli. L’accordo minore — ad esempio — genera ben due terzi suoni non equisoni al fondamentale, di cui quello grave è per di più dissonante (Esempio 14). Inoltre Giordano Riccati fa rilevare che Tartini — dopo aver giustamente condannato Rameau perché, sulla base di una supposta risonanza inferiore, assegna F minore come tonalità relativa di C maggiore — invece di A minore nel suo sistema fa corrispondere C minore a C maggiore: «Possibile che quel lume, che gli ha servito così bene di scorta per discernere gli errori altrui, si spenga poi, quando si tratta di giudicare le cose proprie?» (23, 187-88).
Anche la serie relativa alle dissonanze è facilmente attaccabile; sorvolando sull’arbitrarità della sua costruzione, Riccati fa notare che (23, 200-206):

1. il primo termine è costituito da $1/4$, «perfettissima consonanza»;
2. invece di dare origine alla 13^a, «che tutto giorno si pratica nel contrappunto», dà origine alla 12^a aumentata, che per ammissione dello stesso Tartini «giunge affatto nuova nel musicale sistema»;
3. non è generale, dato che nell’accordo di 9^a minore — ad esempio — le due quinte sono una giusta e l’altra diminuita (cfr. anche 24, 80 sg.).

Tale teoria delle dissonanze ha comunque finalità puramente speculative, cosa indirettamente dimostrata dal fatto che Tartini — per quanto riguarda la pratica — almeno dal 1733 aveva aderito al ‘nuovo stile’ di Calegari-Vallotti (6, 48). Benché tale adesione fosse alquanto misurata, i precetti della ‘Scuola dei rivolti’ emergono chiaramente in alcune sue composizioni, come ad esempio nel Quartetto D. 117 (32, 78).

Il cerchio armonico — Da quanto si è visto, si tratta dunque di una teoria _a priori_ che — nella sua impostazione rigidamente cartesiana — presenta spiccate affinità col modo di procedere di Rameau. Quest’ultimo autore, una volta stabiliti i fondamenti fisico-matematici del suo sistema, passa però direttamente alla pratica; Tartini invece torna indietro e, tramite del tutto inessenziali ed astruse elucubrazioni sul cerchio armonico, cerca di giustificare la sua teoria anche dal punto di vista geometrico. Sul l’insussistenza di tale analogia geometrico-acustica non esiste oggi più alcun dubbio (18, 40-48; 35, 145-60; 2, 187-89).

Essa era comunque stata dimostrata illusoria — anche sotto l’aspetto puramente geometrico — già nella dissertazione di Giordano Riccati poco sopra citata (23): riporterò alcune delle osservazioni contenute in tale lavoro, del quale nessuno studioso moderno mi sembra sia finora occupato.

Riccati, che a partire dal 1760 aveva avuto un nutrito scambio epistolare col violinista istriano proprio su questo tema, esordisce dicendo: «Persuaso il Sig. Tartini dell’utilità della ragione armonica per la Musica, crede d’aver scoperto essere il circolo armonico, e passando da meditazione a meditazione, affermò essere il circolo il fondamento dell’armonia, deducendo da esso l’intero musicale Sistema». Esaminiamo qualcuna delle innumerevoli prove sulla presunta armonicità del cerchio.

1. Con riferimento alla Figura 3, Tartini dimostra che HC^2 è medio
armonico tra i due rettangoli $AHEG$ e $HBDE$. Riccati replica che per tale dimostrazione «egli è d’uopo unire cerchio, e quadrato circoscritto, e far uso del quadrato dell’ordinata, che propriamente parlando non ci viene somministrata dal circolo, piuttostoché dell’ordinata, che alla figura circolare più strettamente, e naturalmente appartiene». Tutti i matematici — aggiunge — sono invece d’accordo nell’associare al cerchio la media geometrica, essendo HC medio geometrico tra AH e HB (23, 171-72).

2. Un’altra prova, secondo Tartini, sarebbe costituita dal fatto che CB^2 risulta essere numericamente pari al terzo suono prodotto dai due generatori AC^2 e HC^2. Anche qua Riccati fa osservare che «il circolo ci dà bene le corde, e l’ordinata, ma non i loro quadrati» (23, 172-73).

3. La seconda delle tre serie viste precedentemente ($1/2$, $2/3$, $3/4$, $4/5$, $5/6$) contiene sia il modo maggiore sia il minore. Nella Figura 4, il
quadrante circolare di centro F e raggio $5/6$ — passando per B $1/2$, C $2/3$, F $5/6$, e non per E $4/5$ e D $3/4$ — estrae da detta serie il modo minore: «Osservi chi legge l’incostanza del metodo. Nel dimostrare il circolo armonico, e nel determinare o il terzo suono, o le parti essenziali del Contrappunto, considera sempre il valente Professore i quadrati delle ordinate del circolo; e poi nel separare dalla seconda serie l’accordo per Terza minore, s’attiene alle semplici ordinate. In oltre per avere la detta seconda serie assegna al circolo il raggio $= 1/2$, e per scegliere da essa l’accordo per Terza minore, pone in opera il circolo del raggio $= 5/6$».

Detto circolo dà inoltre solo la triade minore allo stato di primo rivolto (E^b:G:C: $= 5/6$:2/3:1/2); per averla in posizione fondamentale (C:Eb:G = 1:5/6:2/3) bisogna aggiungere l’unità, cioè il lato del quadrato $AGHP$, che evidentemente non appartiene al cerchio di diametro $5/6$. Riccati osserva infine che quest’ultimo passa per i cinque punti $5/6$, $\sqrt{2/3}$, $\sqrt{7/12}$, $2/3$, $1/2$: per limitarli ai tre della triade minore ($5/6$, $2/3$, $1/2$) «non basta il solo principio del circolo, ma bisogna dar luogo ad un altro principio, ed è, che nell’armonia non si accettino salvo che quantità razionali» (23, 188-93).

Esaurite queste ed altre contestazioni riguardanti l’armonicità del cerchio, Riccati continua: «Promise il Sig. Tartini di ritrattarsi, quando da me si fosse assegnata una figura diversa dal Circolo, da cui si deducesse l’intero musicale Sistema in genere, specie, ed individuo. La figura l’ebbi in pronto, e glie la posi sotto degli occhi, non perché ad essa si appigliasse lasciato il Cerchio, ma perché cavasse la conseguenza, che da principi così rimoti, e totalmente stranieri non dee dedursi il musicale Sistema. La parabola apolloniana meriterebbe il titolo d’armonica con più ragione del circolo». Con riferimento alla Figura 5, è infatti facile dimostrare

Figura 5
che BD è medio armonico tra AB e BC. Riccati fa inoltre constatare che tutte le altre proprietà ‘musicali’ del cerchio si riscontrano anche nella parabola, e per di più senza dover all’occorrenza elevare le varie lunghezze al quadrato: «Che poteva mai replicare il Sig. Giuseppe? Non era questa la circostanza, in cui mantenendo la parola data, doveva ritrattarsi, avendo io assegnata una figura diversa dal circolo, da cui si deduce l’integro musicale Sistema in genere, specie, ed individuo? Se la parabola dà tutto ciò, che somministra il circolo, ed anche qualche cosa in più, e con maggiore uniformità, ed eleganza; non dovea egli ripudiare il circolo, e adottar la parabola? Se fossi persuaso del suo metodo, e dei suoi principj, non tergiverserei un momento. Io, che batto un’altra strada, non posso dichiararmi per la parabola, se non a confronto del circolo» (23, 220-24).

Nonostante il suo tanto con glamato rigore fisico-matematico, argomentazioni di carattere strettamente aritmetico non potevano però fare breccia sulle convinzioni di Tartini, dato che per lui il cerchio in realtà costituiva un simbolo esoterico di derivazione neopitagorica, racchiudente «la scienza occulta del numero».

7. Calegari Antonio, Trattato del sistema armonico, [...] proposto e dimostrato da Melchiorre Balbi, con annotazioni e appendice dello stesso, Padova, Crescini 1829.

10. Commercio di lettere intorno al contrappunto fra il P. Francescantonio Vallotti M.C. Maestro di Cappella nella Basilica di S. Antonio di Padova e il Conde Giordano Riccati [1735-1779], Udine, Biblioteca Comunale, Ms. 1027. (Le lettere citate nel corso dell’articolo vengono integralmente pubblicate in 3.)

26. Roche Édouard, Notice sur les travaux de J.B. Romieu, Montpellier, Boehm 1879.
27. Sabbatini Luigi Antonio, La vera idea delle musicali numeriche segnature, Venezia, Valle 1799.
28. Id., Trattato sopra le fughe musicali [...] corredato da copiosi saggi del suo antecessore Padre Francesco Antonio Vallotti [...], Venezia, Valle 1802 (2 voll.).
30. Tartini Giuseppe, Trattato di musica secondo la vera scienza dell’armonia, Padova, Stamp. del Seminario 1754.
31. Id., De’ principj dell’armonia musicale, Padova, Stamp. del Seminario 1767.
STORIA DELLA MUSICA AL SANTO DI PADOVA

SOMMARIO

Pierluigi Petrobelli Prefazione p. vii
Sergio Durante Introduzione xi

PARTE PRIMA

L'ISTITUZIONE, I MUSICISTI, IL REPERTORIO, GLI STRUMENTI

Antonio Lovato La musica al Santo fino al Quattrocento 1
Jessie Ann Owens Il Cinquecento 27
Arnaldo Morelli Il Seicento 93
Maria Nevilla Massaro Il Settecento 107
Elisa Grossato Ottocento e Novecento 131
Oscar Mischiai Vicende di storia organaria 159

PARTE SECONDA

L'AMBIENTE MUSICALE ANTONIANO FRA PADOVA E L'EUROPA

Pierluigi Petrobelli Giuseppe Tartini 181
Patrizio Barbieri Gli armonisti padovani nel Settecento 199
Paolo Cattelan L'«Accademia» nei dintorni del Santo (1768-1785) 223

APPENDICE MUSICALE

1. Giuliano da Spira Officio ritmico antoniano (nota di T. Scandaletti) 267
2. L. Balbi - B. Pasquali Messa e Vespro per la Basilica (nota di J.A. Owens) 285
4. G. Tartini Concerto in Si minore per violino e archi (nota di P. Petrobelli) 371

Indice dei nomi (a cura di L. Franco) 381